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Introduction

N this article, the performance of a newly developed pressure-

based method for incompressible/compressible flow calculation
is investigated by solving the shock tube problem. This problem has
served as a benchmark case in the literature,'? since it has many tran-
sient flow features. Pressure-based methods have been increasingly
used for the solution of compressible flow.>* The present method is
a generalized version of the method of Ref. 5, which was developed
for incompressible flow computation, using primitive variables.®
Primitive-variable methods are widely used in the incompressible
range. Here it is demonstrated that the present method is also very
capable of solving transient and compressible flows incorporating
strong discontinuities. ‘

The governing equations are discretized using a control-volume-
based finite element (CVBFE) method. The CVBFE method was
initially developed for the solution of heat transfer and fluid flow
problems.®” Later, its application to compressible flow computation
was presented in the literature.®° With the use of a new formulation
for the mass conserving velocity (or convecting velocity), proposed
by Karimian and Schneider,'® a strong coupling between pressure
and velocity is created which does not allow any kind of checker-
board oscillations. The effect of three different methods for energy
flux evaluation on the results are also examined in this article. The
present results agree very well with the exact solution. No explicit
artificial viscosity is added to the solution.

Numerical Method

The conservation form of the one-dimensional unsteady Euler
equations are given by

d
b0 | 3E
ot ax
where Q@ = {p, pu, pe}T is the conserved quantity vector, e =

¢, T + u?/2 is the total energy, p = p/RT is density for a perfect
gas, and the convection flux vector is

= {pu, (pu)u + p, (pu)e + up}T 2)

As is shown in Fig. 1, each element is divided into two subcontrol
volumes (SCV). For each node, a control volume is formed that
includes the two neighboring SCVs. In the CVBFE method a matrix
elemental equation is formed by integrating Eq. (1) over each SCV
within the element, e.g., SCV; and SCV;,, for the element { + %
This requires the transient term to be averaged over the SCVs and
the convection flux vector to be evaluated at the common surface
of the two SCVs within the element, e.g. surface i + 1/2 (note
that element i + 1/2 will be the sample element in the rest of the
article). The assembly procedure of the matrix elemental equations
of all elements, then, will result in the formation of control-volume
equations; for details see Ref. 11.

The transient term is modeled using backward difference in time
and the average value of Q over the SCV is represented by its nodal
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value associated with that SCV, e.g. Q; for SCV;. The components
p, pu, and pe in Q are linearized by the Newton method with respect
to pand T, p and u, and p and e, respectively.!!

In the convection flux vector E; +1s the pressure terms are modeled
using bilinear interpolation. The convected quantities u and e that
appear in the momentum and energy equations, respectively, will
be modeled using the physical influence scheme (PIS) of Ref. 7; for
a brief overview of other methods see Ref. 12. For the convecting
velocity that appears in the mass flux and will be indicated by caret,
i.e., i, a different formulation is used. The treatment of density is
somewhat similar to that of the convected quantities. Using the new
notation, the convection flux vector at i 4+ 1/2 is represented by

E,1= {pit, (pidu + p, (pit)ye + up} 3

The underlying principle of PIS is to bring the correct physical
influence of the problem into the convected quantity formulation.
This is done by algebraically approximating the relevant governing
equation for the quantity in question at the control-volume surface.
For the fluid flow prediction, the nonconservative form of the mo-
mentum equation given by

du du dp
Por TP Tax =0 @
can be considered as the transport equation for the convected ve-
locity. Each term of this equation is modeled at i + %, based on the
physics of the problem. Assuming that the flow is going from left
to right, after modeling and rearrangement the following expression
for the convected velocity is obtained:

P'"Pi-l—l i+%

u’ U,‘
iy =Uit {Zp_u[l n (1/20)]} + [ (1+20) ] ®)

where the Courant number is C = #(At/Ax). The overbar and
superscript o denote the lagged values from the previous iteration
and the previous time step, respectively, and the variables U and P
denote nodal values of velocity and pressure, respectively. There are
three forms of the energy equation that can be modeled at i + %, toob-
tain a formulation for the convected total energy at this point. In the
following, these energy equations and the corresponding formula-
tions for e, 1, which are obtained after modeling and rearrangement
of the relevant energy equation, are presented.

The first choice is the nonconservative form of the energy equation
given by

de % o(up)

pg; +ou 0x + d0x
from which ¢; 1 is obtained as

=0 (6)

€irl =

(T + 10:U) + ([(PU); — (PUY)/25m) sl

[1+(1/20)] (1+20)
(N
The second one is the thermal energy equation given by
pcva +pucvaT +p3bi =0 @®
at ox dx

which depicts the transport nature of temperature. From this equa-
tion T, 1 is obtained as

r T+ piy L LU = Ui1)/2puc,) T,:% o
i+ T 1+ (1/20)] taro @

which is substituted in [¢, T + (i2/2)], i+ to represent ¢; i+l The &

would be the average of two nodal velocmes U; and Uy y,.
The third option is to choose the following form of the energy
equation:

pu— =0 (10)
X



166 AIAA JOURNAL, VOL. 33, NO. 1: TECHNICAL NOTES

control yolume i
element i-1/2 element i+1/2
Fig.1 One-dimensional grid structure.
and find the value of total enthalpy as
- o — n° ~
N LR L) Wy +[(oeey = 21,))/7] an

2 [1+(1/2C)} (1+20)
in which 4; has been substituted for by ¢, T; + % U;U;. Equation (11),
then, will be used to represent the term (e + p/p) in Eq. (3).

The mass flux p# in the second and third components of Eq. (3) is
evaluated using lagged values from the previous iteration. However,
the mass flux in the continuity equation, i.e., the first component of
Eq. (3), is linearized with respect to both density and velocity, i.e.,

il = pil + pi — pil 12

where # = # (this is also true for the previous equations). In this
case as the effect of compressibility becomes more important, par-
ticularly in supersonic flow, the hyperbolic behavior of pressure
through p, in the term pii, becomes dominant. This is enforced by
implementing the following formulation for the density:

1
Pivy = oz P (89) (13)

where Ap is the density correction term that will be introduced
shortly. The convecting velocity formulation is given by

. Ui+ Ui P, — Py
L= TERMS 14
ity 2 Sy (1200 (19
where
(i = p) + @/ C)piyy = 07, )
TERMS =
2pull + (1/2C)]
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TERMS contains the part of formulation that is due to compress-
ibility and transition in time and is evaluated using lagged values
from the previous iteration. As was mentioned, the present formu-
lation is the extension of an originally developed numerical method
for the incompressible flow calculation, in which Eq. (14), with
TERMS = 0, was proposed to surmount the checkerboard oscilla-
tions. With the above formulations two values of velocity have been
used ati + %; one is the convected velocity given by Eq. (5), and the
other is the convecting velocity given by Eq. (14). These two veloc-
ities will become very close to each other in the converged solution.
Implementation of two such velocities at the control-volume sur-
face has been found essential to suppress pressure oscillations.>5:13
More details about the derivation of Eq. (14) can be found in Refs. 5,
10, and 11.

Very similar to the evaluation of the convected quantities, at high-
speed supersonic flow Ap can be evaluated by modeling and rear-
rangement of the continuity equation at i + % However, in the
incompressible limit, where the density is nearly constant, Ap is
approximated by (;41 — £;)/2. In this study our experience indi-
cates that for the shock tube problem, both methods result in the very
same numerical solutions. Therefore, to reduce the computational
effort Ap is calculated from (91 — £i)/2.
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Fig. 2 Results of the shock tube problem with 200 nodes at ¢ = 0.42
ms, energy flux calculated: a-d) using Eq. (9), e) using Eq. (7), and f)
Using Eq. (11).

The formulation of the method is now complete. However, a few
comments need to be made. First, the method is second-order ac-
curate in space. Second, the method is fully implicit and, therefore,
first order in time. Third, to avoid the under/overshoots in the vicin-
ity of the moving shock and contact discontinuity in the numerical
solution, the values of Ap in Eq. (13) and TERMS in Eq. (14) are
not calculated directly, but using an absolute harmonic interpolation
in the entire domain; for details see Ref. 11.

Numerical Results

The flow is initially at rest in a 1 m long duct, which is equally
divided by a diaphragm into a high-pressure region (1013.0kPa) and
a low-pressure (101.3 kPa) region. At = 0, temperature is 293 °K
in both regions. Other gas properties are ¢, = 717.0 J/kg °K, R =
286.0J/kg °K and y = 1.40. A uniform grid with 200 nodes is used,
and the solution was stopped att = 0.42 ms with atime step of At =
4.0 1076 5. The pressure, density, and temperature distributions are
nondimensionalized by the initial pressure and density at the low-
pressure region and the initial temperature, respectively. At each
time step the solution is converged to meet the following criterion:

i )<

where i = 1, ..., N with N being the total number of nodes and
€ = 0.01. Numerical results of the present method, using Eq. (9)
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to evaluate energy flux at the control-volume surface, are in very
good agreement with the exact solution in Figs. 2a—2d. The mov-
ing shock wave is captured very sharply within a few nodes. The
pressure and velocity solutions are almost exact, however, there is
a minor undershoot before the contact discontinuity in the temper-
ature distribution. Since the density is calculated from the equation
of state, its value is completely dependent on the pressure and tem-
perature fields. The effect of using Eqgs. (7) and (11) to evaluate
the energy flux at the control-volume surface is shown in Figs. 2e
and 2f, respectively. The pressure and velocity distributions are not
shown here; they are similar to the results in Figs. 2b and 2d, ex-
cept that for the velocity distributions there exists a small overshoot
at x = 0.0. A temperature undershoot higher than that in Figs. 2¢
and 2e is seen in Fig. 2f. However, there is not much difference in
the rest of the temperature distributions; see Ref. 11 for complete
results.

In conclusion, for the numerical results, the overall accuracy of the
method is found to be quite satisfactory, and no particular problem
has been detected. All three forms of the energy flux evaluation can
be used in this method, however, smoother results are obtained when
Eq. (9) is used.
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Simulating Heat Addition
via Mass Addition in Constant
Area Compressible Flows
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Introduction

HE one-dimensional flow analyses of this study demonstrate
the interesting and potentially useful similarities between the
influence of heat addition and of mass addition (injected normal to
the flow at the same total temperature) on compressible duct flows.
For the most part, the effect of a given fractional mass flow ad-
dition on flow properties is equivalent to twice that amount of frac-
tional total temperature increase. This conclusion applies in particu-
lar to the important phenomena of choking and wall boundary-layer
separation, the latter resulting from the adverse pressure gradients
created by heat or mass addition in supersonic flows. Wall boundary-
layer separation is, in fact, so natural to such flows that it appears to
often precede any choking that would otherwise occur.

The results of this study suggest that some aspects of the com-
plex behavior of dual-mode.ramjet/scramjet combustors! could be
experimentally evaluated or demonstrated by replacing combustion
with less expensive, more easily controlled, safer mass addition.

The first clue to the strength of the analogy is revealed by the
well-known influence coefficients of one-dimensional compress-
ible flows (e.g., Table 8.2 of Ref. 2), several of the most important
of which are found in Table 1. The clear message of this tabula-
tion is that the incremental influence of a given fractional change
of mass flow rate §m/m on Mach number M, static pressure p,
and total pressure p, is exactly double that of an equal fractional
change of total temperature 67, /7T; for the same ratio of specific
heats y.

Simple Mass or Heat Addition Flows

The analyses that follow next are based on the classical one-
dimensional model of the steady, constant throughflow area flow of
a calorically perfect gas.? In addition to the traditional model, it will
be assumed that any mass addition has the same total temperature
and imposition as the inlet flow and is injected normal to the duct
axis (i.e., without contributing to the axial momentum) and, unless
otherwise noted, the flow is frictionless.

The reader will recognize that many of these assumptions are
made for convenience, rather than out of necessity. Solutions to the
governing equations could be obtained with less restrictive assump-
tions (e.g., the case of combined mass addition and wall friction
that appears later) but at a price we believe to be disproportionate to
the benefit, including the loss of simplicity and transparency. These
assumptions have led to fruitful results throughout the history of
compressible fluid mechanics, as they will for the situation at hand.

When the throughfiow area is constant and only one forcing func-
tion (e.g., heat or mass addition) is present, these flows are com-
monly known as simple flows. They have many appealing and use-
ful characteristics, the best known being that they yield closed-form
algebraic solutions that depend on the single forcing function (e.g.,
Table 8.3 of Ref. 2). Simple flows have contributed generously to
organizing our thinking, intuition, and experiences about compress-
ible flows, and the present case will prove to be no exception. The
simple flow involving heat addition is usually referred to as Rayleigh
flow. The simple flow involving mass addition has no established
designation, and will be referred to here as SMA flow.

The solution procedures for Rayleigh flow and SMA flow will
not be reproduced in any detail here, but the same solutions can be
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